Fast-rising to be the gold standard for publishing trail-blazing innovative research, ACS Central Science also publishes scientist commentary, forward-looking reviews, engaging interviews, and in-depth news articles.
The Communications journals (Biology, Chemistry and Physics) are pleased to introduce their first travel grants for early career researchers. The programme aims to help promising researchers travel to an international scientific meeting of their choice.
Japan needs to embrace strategic research and globalization to remain at the forefront of innovation. Learn more about Okinawa Institute of Science and Technology Graduate University's (OIST) rapid growth and what it means for science in Japan and beyond.
A composite knot with nine crossings of the same handedness has been prepared from a hexameric circular helicate in 41% yield in a two-step synthesis. An isomeric cyclic [3]catenane topologically constrained to always have at least three twists within the links is also formed. Both topologies have a high degree of writhe, analogous to that of supercoiled DNA.
Aryl functionalization of carbon nanotubes generates sp3 defects capable of quantum light emission. A multiplicity of possible binding configurations, however, leads to spectrally diverse emission bands. Now, it is shown that the structural symmetry of zigzag nanotubes and a high chemical selectivity for ortho configurations results in defect-state emission from a single narrow band.
The promise shown by metal–organic frameworks for various applications is somewhat dampened by their instability towards water. Now, an activated MOF has shown good hydrolytic stability owing to the presence of weak, sacrificial coordination bonds that act as a 'crumple zone'. On hydration, these weak bonds are cleaved preferentially to stronger coordination bonds that hold the MOF together.
New natural-product-inspired molecules are often limited by their only partial coverage of biologically relevant chemical space. Combining fragments of natural products has now been shown to yield pseudo natural products, which — while still being inspired by natural products — populate previously unexplored areas of chemical space and have novel biological activities.
On-surface polymerization is a promising technique to prepare organic functional nanomaterials, but it has remained difficult to carry out on insulating surfaces. Now, the photoinitiated radical polymerization of dimaleimide on KCl, initiated from a two-dimensional gas phase and guided by molecule–substrate interactions, has led to polymer fibres up to 1 μm long.
Lipid membranes—which separate cells and organelles from their environment—experience tension during various cell processes; however, measuring membrane tension is notoriously difficult. Now, a new fluorescent, mechanosensitive membrane probe called FliptR has been developed. FliptR enables simple, direct membrane tension measurements in cellular and artificial membranes.
Traditionally, strong-bond activation by transition metals has been achieved through an oxidative addition pathway. Now, a redox-neutral palladium(ii)-catalysed β-elimination strategy has been shown to activate alkyl C–O, N, C, F and S bonds to give an alkene that can be trapped with various nucleophiles. This functional group metathesis allows upgrading of amino acid derivatives and ring-opening of saturated heterocycles.
A paradoxical case of a well-defined diradicaloid that has an unusually large singlet–triplet energy gap (ΔES-T) imparted by the thiophene sulfur atom is reported. Quantum chemistry, organic synthesis, molecular spectroscopies, X-ray crystal analysis and high-temperature magnetic measurements help account for the dichotomy between the large diradical character and large ΔEST.
The simplest sugar—glycolaldehyde—has recently been detected in space and now a mechanistic rationale for its formation is presented, which includes its onward reaction to the next higher aldose, glyceraldehyde. The key species in the chemistry at play is the formaldehyde isomer hydroxymethylene, which reacts with the carbonyl component in an essentially barrierless carbonyl–ene-type reaction.
Measurements of vector correlations provide insight into the forces acting during molecular collisions, and are a stringent test of electronic-structure calculations. Now, non-intuitive dynamics of molecular collisions have been revealed by measuring the correlation between the relative velocities of the colliders and the molecular rotational angular momentum—before and after the collision—for NO(A 2Σ+) + Ne.
Organoclay/DNA semipermeable microcapsules with catalase-powered oxygen gas bubble-dependent buoyancy are prepared and exploited as synthetic protocells capable of programmed motility and sustained oscillatory movement.
A rapid, modular, stereodivergent and diversity-oriented strategy for constructing acyclic molecular frameworks bearing up to four contiguous and congested stereogenic elements has been developed. This approach can yield the target compounds with remarkably high levels of stereocontrol in only three catalytic steps from commercially available alkynes.
Nature Briefing is an essential round-up of science news, opinion and analysis, free in your inbox every weekday. With Nature Briefing, we'll keep you updated on the latest research, so you can focus on yours.
Natureevents is a fully searchable, multi-disciplinary database designed to maximise exposure for events organisers. The contents of the Natureevents Directory are now live. The digital version is available here. Find the latest scientific conferences, courses, meetings and symposia on natureevents.com. For event advertising opportunities across the Nature Publishing Group portfolio please contact natureevents@nature.com
Macmillan Publishers Limited is a company incorporated in England & Wales under company number 785998 & whose registered office is located at The Campus, 4 Crinan Street, London, N1 9XW. Nature Research | One New York Plaza, Suite 4500 | New York | NY 10004-1562 | USA
No comments:
Post a Comment