Monday, May 5, 2014

Science X Newsletter Week 18

Dear Reader ,

Here is your customized Phys.org Newsletter for week 18:

Ancient Egyptians transported pyramid stones over wet sand
Physicists from the FOM Foundation and the University of Amsterdam have discovered that the ancient Egyptians used a clever trick to make it easier to transport heavy pyramid stones by sledge. The Egyptians moistened the sand over which the sledge moved. By using the right quantity of water they could halve the number of workers needed. The researchers published this discovery online on 29 April 2014 in Physical Review Letters.

Superheavy element 117 confirmed
(Phys.org) —The stage is set for a new, super-heavy element to be added to the periodic table following research published in the latest Physics Review Letters. Led by researchers at Germany's GSI laboratory, the team created atoms of element 117, matching the heaviest atoms ever observed, which are 40 per cent heavier than an atom of lead.

Scientists create circuit board modeled on the human brain (w/ Video)
(Phys.org) —Stanford scientists have developed faster, more energy-efficient microchips based on the human brain – 9,000 times faster and using significantly less power than a typical PC. This offers greater possibilities for advances in robotics and a new way of understanding the brain. For instance, a chip as fast and efficient as the human brain could drive prosthetic limbs with the speed and complexity of our own actions.

Proving uncertainty: First rigorous formulation supporting Heisenberg's famous 1927 principle
Nearly 90 years after Werner Heisenberg pioneered his uncertainty principle, a group of researchers from three countries has provided substantial new insight into this fundamental tenet of quantum physics with the first rigorous formulation supporting the uncertainty principle as Heisenberg envisioned it.

Mystery of the pandemic flu virus of 1918 solved
A study led by Michael Worobey at the University of Arizona in Tucson provides the most conclusive answers yet to two of the world's foremost biomedical mysteries of the past century: the origin of the 1918 pandemic flu virus and its unusual severity, which resulted in a death toll of approximately 50 million people.

Study questions Neandertal inferiority to early modern humans
If you think Neanderthals were stupid and primitive, it's time to think again. The widely held notion that Neanderthals were dimwitted and that their inferior intelligence allowed them to be driven to extinction by the much brighter ancestors of modern humans is not supported by scientific evidence, according to a researcher at the University of Colorado Boulder.

Scientists watch high-temperature superconductivity emerge out of magnetism
(Phys.org) —Scientists at SLAC National Accelerator Laboratory and Stanford University have shown for the first time how high-temperature superconductivity emerges out of magnetism in an iron pnictide, a class of materials with great potential for making devices that conduct electricity with 100 percent efficiency.

Mathematicians trace source of Rogers-Ramanujan identities, find algebraic gold
Mathematicians have found a framework for the celebrated Rogers-Ramanujan identities and their arithmetic properties, solving another long-standing mystery stemming from the work of Indian math genius Srinivasa Ramanujan.

Physics students devise concept for Star Wars-style deflector shields
If you have often imagined yourself piloting your X-Wing fighter on an attack run on the Death Star, you'll be reassured that University of Leicester students have demonstrated that your shields could take whatever the Imperial fleet can throw at you.

Study of gamma-ray bursts afterglow surprises scientists
Research from an international team of scientists led by the University of Leicester has discovered for the first time that one of the most powerful events in our universe – Gamma-Ray Bursts (GRB) – behave differently than previously thought.

The intergalactic medium unveiled: Cosmic Web Imager directly observes 'dim matter'
(Phys.org) —Caltech astronomers have taken unprecedented images of the intergalactic medium (IGM)—the diffuse gas that connects galaxies throughout the universe—with the Cosmic Web Imager, an instrument designed and built at Caltech. Until now, the structure of the IGM has mostly been a matter for theoretical speculation. However, with observations from the Cosmic Web Imager, deployed on the Hale 200-inch telescope at Palomar Observatory, astronomers are obtaining our first three-dimensional pictures of the IGM. The Cosmic Web Imager will make possible a new understanding of galactic and intergalactic dynamics, and it has already detected one possible spiral-galaxy-in-the-making that is three times the size of our Milky Way.

Entire star cluster thrown out of its galaxy
(Phys.org) —The galaxy known as M87 has a fastball that would be the envy of any baseball pitcher. It has thrown an entire star cluster toward us at more than two million miles per hour. The newly discovered cluster, which astronomers named HVGC-1, is now on a fast journey to nowhere. Its fate: to drift through the void between the galaxies for all time.

Researchers suggest dark matter disk in Milky Way plane could signal rash of comet strikes on Earth
(Phys.org) —A pair of researchers at Harvard University has published a paper in the journal Physical Review Letters, in which they suggest that a dark matter disk hiding in the Milky Way plane might be responsible for causing asteroids or comets to head our way. In their paper, Lisa Randall and Matthew Reece suggest that such a dark matter disk could pull other bodies from the Oort cloud, some of which could wind up heading toward Earth.

Researchers find possible evidence of toroidal magnetic field surrounding magnetar
(Phys.org) —Space researchers in Japan working at the Suzaku observatory have found possible evidence of the existence of a toroidal magnetic field surrounding the magnetar 4U 0142+61. In their paper published in the journal Physical Review Letters, the research team describe their observation of inconsistent pulses coming from 4U 0142+61, suggesting the presence of an external magnetic field.

Physicists discover how to change the crystal structure of graphene
A University of Arizona-led team of physicists has discovered how to change the crystal structure of graphene, more commonly known as pencil lead, with an electric field, an important step toward the possible use of graphene in microprocessors that would be smaller and faster than current, silicon-based technology.

Research shows strategic thinking strengthens intellectual capacity
Strategy-based cognitive training has the potential to enhance cognitive performance and spill over to real-life benefit according to a data-driven perspective article by the Center for BrainHealth at The University of Texas at Dallas published in the open-access journal Frontiers in Systems Neuroscience. The research-based perspective highlights cognitive, neural and real-life changes measured in randomized clinical trials that compared a gist-reasoning strategy-training program to memory training in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer's disease.

Coming soon: A brain implant to restore memory
In the next few months, highly secretive US military researchers say they will unveil new advances toward developing a brain implant that could one day restore a wounded soldier's memory.

Flexible battery, no lithium required
(Phys.org) —A Rice University laboratory has flexible, portable and wearable electronics in its sights with the creation of a thin film for energy storage.

Multilayer, microscale solar cells enable ultrahigh efficiency power generation
Researchers at the University of Illinois at Urbana-Champaign use a printing process to assemble tiny cells into multilayer stacks for extraordinary levels of photovoltaic conversion efficiency.

Study reveals a way to improve chances of winning at rock-paper-scissors
(Phys.org) —A trio of researchers at Zhejiang University in China has found a way for players to improve their odds of winning when playing the hand game rock-paper-scissors. In their paper they've uploaded to the preprint server arXiv, the researchers describe a field study they undertook with a large crowd of volunteers and how it revealed the secret.


This email is a free service of Phys.org
You received this email because you subscribed to our list.
If you no longer want to receive this email use the link below to unsubscribe.
https://sciencex.com/profile/nwletter/
You are subscribed as jmabs1@gmail.com

No comments: