Friday, June 10, 2022

Inbox Astronomy: Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy

INBOX ASTRONOMY

Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy

Release date: Friday, June 10, 2022 10:00:00 AM EDT

Hubble Determines Mass of Isolated Black Hole Roaming Our Milky Way Galaxy



Hubble Finds Phantom Imprint in Space Revealing Wandering Stellar Corpse

Our Milky Way galaxy is haunted. The vast gulf of space between the stars is plied by the dead, burned-out and crushed remnants of once glorious stars. These black holes cannot be directly seen because their intense gravity swallows light. Like legendary wandering ghosts, their presence can only be deduced by seeing how they affect the environment around them.

Imagine crushing the mass of a fleet of battleships into something no bigger than a baseball. That only begins to describe the infinite density locked away into a black hole left over from a stellar explosion. The black hole is typically several times the mass of our Sun. The intense gravity from something so dense warps the fabric of space around it, like a bowling ball rolling across the skin of a trampoline. Starlight passing near this gravitational pothole in space is deflected. And this is how the phantom black holes are found.

Astronomers estimate that there should be 100 million black holes roaming among the 100 billion stars in our galaxy. But since black holes emit no light of their own, they are extremely difficult to detect. Now, astronomers have at last come up with clear evidence for finding one in a needle-in-a-haystack search among a blizzard of stars seen toward the galactic center. The light from a star far behind the black hole was momentarily brightened and deflected by the black hole passing in front of it. This was a long and painstaking measurement that the Hubble Space Telescope's exquisite resolution is well-suited for. The black hole's powerful gravitation left a unique fingerprint on the deflection of starlight, eliminating other potential gravitational lensing candidates.

No need for us to worry because the black hole is 5,000 light-years away. But, statistically, this detection means that the nearest wandering black hole to Earth could be no more than 80 light-years away.



Find additional articles, images, and videos at HubbleSite.org



  Please do not reply to this message.
You are receiving this email because you are subscribed to the Inbox Astronomy mailing list.
 
Produced by the Space Telescope Science Institute's Office of Public Outreach
 

No comments: