Advertisement | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| TABLE OF CONTENTS | |||||||||||||||||||||||||||||||||||||
| June 2015 Volume 16 Number 6 | Advertisement | ||||||||||||||||||||||||||||||||||||
In this issue
|
| ||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| Advertisement | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| Comment: The diverse origins of the human gene pool Svante Pääbo p313 | doi:10.1038/nrg3954 Abstract | Full Text | PDF | |||||||||||||||||||||||||||||||||||||
| REVIEWS | Top | ||||||||||||||||||||||||||||||||||||
| Machine learning applications in genetics and genomics Maxwell W. Libbrecht & William Stafford Noble p321 | doi:10.1038/nrg3920 Machine learning methods are becoming increasingly important in the analysis of large-scale genomic, epigenomic, proteomic and metabolic data sets. In this Review, the authors consider the applications of supervised, semi-supervised and unsupervised machine learning methods to genetic and genomic studies. They provide general guidelines for the selection and application of algorithms that are best suited to particular study designs. Abstract | Full Text | PDF | |||||||||||||||||||||||||||||||||||||
| Estimating the mutation load in human genomes Brenna M. Henn, Laura R. Botigué, Carlos D. Bustamante, Andrew G. Clark & Simon Gravel p333 | doi:10.1038/nrg3931 A large proportion of genetic variants in the human genome have been predicted to be deleterious. This Review examines the frequency and patterns of deleterious alleles in the human genome and considers recent studies with conflicting findings on whether the mutation load, or burden of deleterious alleles, differs across populations. Abstract | Full Text | PDF | Supplementary information | |||||||||||||||||||||||||||||||||||||
Haplotype-resolved genome sequencing: experimental methods and applications Matthew W. Snyder, Andrew Adey, Jacob O. Kitzman & Jay Shendure p344 | doi:10.1038/nrg3903 High-throughput DNA sequencing technologies are providing an ever-expanding wealth of genome sequence data, including detailed information on human genetic variation. However, such data typically lack haplotype information (that is, the cis-connectivity of variants along individual chromosomes). This Review describes diverse recent experimental methods by which genetic variants can be resolved into haplotypes, accompanying computational methods and important applications of these methods in genomics and biomedical science. Abstract | Full Text | PDF | |||||||||||||||||||||||||||||||||||||
| Evidence for archaic adaptive introgression in humans Fernando Racimo, Sriram Sankararaman, Rasmus Nielsen & Emilia Huerta-Sánchez p359 | doi:10.1038/nrg3936 The analysis of whole-genome sequence data from both modern and ancient humans has provided evidence for archaic adaptive introgression. Here, the authors provide an overview of the statistical methods used and the supporting evidence for reported examples of archaic introgression, which may have driven the acquisition of beneficial variants that enabled adaptation and survival in new environments. Abstract | Full Text | PDF | Supplementary information | |||||||||||||||||||||||||||||||||||||
| Advertisement | |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||
| *2013 Journal Citation Report (Thomson Reuters, 2014) |
You have been sent this Table of Contents Alert because you have opted in to receive it. You can change or discontinue your e-mail alerts at any time, by modifying your preferences on your nature.com account at: www.nature.com/myaccount For further technical assistance, please contact our registration department For print subscription enquiries, please contact our subscription department For other enquiries, please contact our feedback department Nature Publishing Group | 75 Varick Street, 9th Floor | New York | NY 10013-1917 | USA Nature Publishing Group's worldwide offices: Macmillan Publishers Limited is a company incorporated in England and Wales under company number 785998 and whose registered office is located at Brunel Road, Houndmills, Basingstoke, Hampshire RG21 6XS. © 2015 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. |
No comments:
Post a Comment